Counting Bits

338.Counting Bits

Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1‘s in the binary representation of i.

Example 1:

1
2
3
4
5
6
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10

Example 2:

1
2
3
4
5
6
7
8
9
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

Brian Kernighan 算法:

时间复杂度:O(nlogn)

空间复杂度:O(1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int countOnes(int x) {
int ones = 0;
while (x > 0) {
x &= (x - 1);
ones++;
}
return ones;
}

vector<int> countBits(int n) {
vector<int> bits(n + 1);
for (int i = 0; i <= n; i++) {
bits[i] = countOnes(i);
}
return bits;
}
};

动态规划:

时间复杂度:O(n)

空间复杂度:O(1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public:
vector<int> countBits(int n) {
vector<int> bits(n + 1);
int highBit = 0;
for (int i = 1; i <= n; i++) {
if ((i & (i - 1)) == 0) {
highBit = i;
}
bits[i] = bits[i - highBit] + 1;
}
return bits;
}
};
1
2
3
4
5
6
7
8
9
10
class Solution {
public:
vector<int> countBits(int n) {
vector<int> bits(n + 1);
for (int i = 1; i <= n; i++) {
bits[i] = bits[i >> 1] + (i & 1);
}
return bits;
}
};
1
2
3
4
5
6
7
8
9
10
class Solution {
public:
vector<int> countBits(int n) {
vector<int> bits(n + 1);
for (int i = 1; i <= n; i++) {
bits[i] = bits[i & (i - 1)] + 1;
}
return bits;
}
};