461.Hamming Distance
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Given two integers x
and y
, return the Hamming distance between them.
Example 1:
1 2 3 4 5 6 7
| Input: x = 1, y = 4 Output: 2 Explanation: 1 (0 0 0 1) 4 (0 1 0 0) ↑ ↑ The above arrows point to positions where the corresponding bits are different.
|
Example 2:
1 2
| Input: x = 3, y = 1 Output: 1
|
位运算:
时间复杂度:O(logC),本题中logC = log2^31
空间复杂度:O(1)
1 2 3 4 5 6 7 8 9 10 11 12
| class Solution { public: int hammingDistance(int x, int y) { int ans = 0; while(x > 0 || y > 0) { if((x & 1) != (y & 1))ans++; x >>= 1; y >>= 1; } return ans; } };
|
1 2 3 4 5 6 7 8 9 10 11
| class Solution { public: int hammingDistance(int x, int y) { int s = x ^ y, ret = 0; while (s) { ret += s & 1; s >>= 1; } return ret; } };
|
内置位运算:
时间复杂度:O(1)
空间复杂度:O(1)
1 2 3 4 5 6
| class Solution { public: int hammingDistance(int x, int y) { return __builtin_popcount(x ^ y); } };
|
Brian Kernighan 算法:
时间复杂度:O(logC),本题中logC = log2^31
空间复杂度:O(1)
1 2 3 4 5 6 7 8 9 10 11
| class Solution { public: int hammingDistance(int x, int y) { int s = x ^ y, ret = 0; while (s) { s &= s - 1; ret++; } return ret; } };
|